
Combinatorics in Banach space theory
PROBLEMS (Part 4)∗

PROBLEM 4.1. Show that for every Banach space X and every 1 6 p 6 ∞ we have
`p(X) ⊕ `p(X) ' X ⊕ `p(X) ' `p(X) and c0(X) ⊕ c0(X) ' X ⊕ c0(X) ' c0(X), where
`p(X) and c0(X) stand for the `p- and c0-sums of countably many copies of X (see
Definition 5.1 from the lecture notes).

PROBLEM 4.2. Let D be a set, D∗ be the collection of all non-principal ultrafilters
contained in PD, and for any A ∈ PD let

A∗ =
{
p ⊂ PD : p is a non-principal ultrafilter with A ∈ p

}
and

A =
{
p ⊂ PD : p is an ultrafilter with A ∈ p

}
.

We consider the topological spaces: D ∪ D∗, with the topology generated by the basis
{A∪A∗ : A ∈ PD}, and the Stone space St(PD) consisting of all ultrafilters contained in
PD, with the topology generated by the basis {A : A ∈ PD} (see Lecture 6 for further
details). Show that the map ϕ : D ∪ D∗ → St(PD) given by{

ϕ(x) = {A ⊂ D : x ∈ A}, for x ∈ D
ϕ(p) = p, for p ∈ D∗

is a homeomorphism.
Remark. Both of these topological spaces may be considered as the definition of the Stone-Čech
compactification βD of the discrete space D.

PROBLEM 4.3. It is to be proved that for any set D the remainder space βD \ D is
(homeomorphic to) the Stone space of the quotient Boolean algebra PD/FD (FD stands
for the ideal of all finite subsets of D). More precisely, let CO(βD\D) be the algebra of all
clopen subsets of βD \D and let ψ : CO(βD \D)→ PD/FD be given by ψ(A∗) = [A]FD,
where A∗ is defined as in Problem 4.2 and [A]FD is the coset in PD/FD determined by
A. Recall that every clopen subset of βD \ D has the form A∗ for some A ∈ PD (see
Lecture 6). Show that ψ yields an isomorphism between the algebras CO(βD \ D) and
PD/FD.

PROBLEM 4.4. Define a set algebra F ⊂ PN by

F =
{
A ⊂ N : |A ∩ {2k − 1, 2k}| ∈ {0, 2} for all but finitely many k ∈ N

}
.

For every A ∈ F choose any set A′ ∈ F that contains almost all numbers from A
and satisfies |A′ ∩ {2k − 1, 2k}| ∈ {0, 2} for each k ∈ N. Now, for every non-principal
ultrafilter p ∈ St(F ) let ϕ(p) be an ultrafilter containing the sets A′’s for all A ∈ p.
Show that ϕ(p) is uniquely determined by p and that this definition does not depend on
the choice of the sets A′’s. Next, show that the so-defined map ϕ : St(F ) \N→ βN \N
(here we identify N with the set of all principal ultrafilters contained in F , which is
simply the set of all isolated points in St(F )) is a homeomorphism.
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PROBLEM 4.5. Let F be a set algebra and B(F ) be the Banach space of all scalar-
valued functions that are uniform limits of sequences of F -measurable step functions,
equipped with the supremum norm. Prove that B(F ) is isometrically isomorphic to
C(St(F )), the Banach space of all continuous functions on the Stone space of F .
Hint. Note that characteristic functions of clopen sets are continuous. Use the Stone–Weierstrass
theorem: If K is a compact Hausdorff space and A is a subalgebra of C(K) (assumed to be
self-adjoint, i.e. f ∈ A ⇒ f ∈ A, in the complex case) that separates points (i.e. for every
x, y ∈ K with x 6= y there is some f ∈ A such that f(x) 6= f(y)) and contains the unit 1K ,
then A is dense in C(K) with respect to the supremum norm.
Remark. By a classical result of measure theory, in the case where F is a σ-algebra the space
B(F ) is just the space of all bounded F -measurable scalar functions.

PROBLEM 4.6. Suppose F is a set algebra having the subsequential completeness
property (see Definition 6.9 from the lecture notes) and (On)∞n=1 is a sequence of pairwise
disjoint clopen subset of the Stone space of F . Prove that there exists a subsequence
(Onj)

∞
j=1 such that the set ⋃∞j=1Onj is open.

PROBLEM 4.7. Let F be the algebra of all subset of N which are either finite or
have finite complements. Give an example of a sequence (µn)∞n=1 of real-valued measures
defined on F such that supn |µn(E)| < ∞ for each E ∈ F , yet supn |µn|(N) = ∞. In
other words, show that the Nikodým Boundedness Principle (Theorem 2.5 from the
lecture notes) fails for set algebras.

PROBLEM 4.8. A series
∑∞
n=1 xn in a Banach space X is called weakly unconditionally

Cauchy (WUC for short) whenever
∑∞
n=1 |x∗xn| <∞ for every x∗ ∈ X∗. Give an example

of a WUC series in c0 that is not weakly convergent.
Remark. The example which you are supposed to find is, in a sense, the ‘unique’ example of
a WUC series that is not weakly convergent (it is even the ‘unique’ WUC series that is not
unconditionally convergent). In fact, the following theorem holds: A Banach space X does not
contain an isomorphic copy of c0 if and only if every WUC series in X is unconditionally
convergent. Given a divergent WUC series

∑∞
n=1 in X one may find a sequence of vectors of

the form yn =
∑qn
j=pn xj , where 1 6 p1 < q1 < p2 < q2 < . . ., which is (in some precise

sense) equivalent to the standard unit vector basis of c0; see [J. Lindenstrauss, Classical Banach
Spaces, vol. 1, Prop. 2.e.4] and also [F. Albiac, N.J. Kalton, Topics in Banach Space Theory,
pp. 40–42].

PROBLEM 4.9. Show that `1(Γ) is not WCG, whenever Γ is uncountable.
Hint. Have a look at Problem 2.5.

PROBLEM 4.10. A Banach space X is said to have Pełczyński’s property (V) whenever
the following characterisation of weak compactness in X∗ holds true: A set K ⊂ X∗ is
relatively weakly compact if and only if

lim
n→∞

sup
x∗∈K

|x∗xn| = 0 for every WUC series
∞∑
n=1

xn in X (∗)

(see Problem 4.8). Explain that Grothendieck’s Theorem 3.6 means exactly that C(K)-
spaces, for any compact Hausdorff space K, have the property (V).
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Hint. In fact, you will need Grotendieck’s theorem only to show that the condition (∗) is sufficient
for K being relatively weakly compact. Observe (and prove) also that (∗) actually implies that
K is bounded, which was assumed in Grothendieck’s theorem because of a somehow weaker
assumption. The necessity of (∗) may be proved directly without using any special machinery.

PROBLEM 4.11. Prove that if X is a Grothendieck space, then X∗ is weakly sequen-
tially complete (that is, all weakly Cauchy sequences are weakly convergent).
Hint. It follows quite directly from the very definition of Grothendieck space (Definition 6.1).

PROBLEM 4.12. Let X1, X2, . . . be Banach spaces. Show that for any 1 6 p < ∞ we
have the isometric isomorphism( ∞⊕

n=1

Xn

)∗
p
'
( ∞⊕
n=1

X∗n

)
q
,

where 1/p+ 1/q = 1.

PROBLEM 4.13. Show that `∞ ' L∞(0, 1).
Hint. Apply the Pełczyński Decomposition Method. You are allowed to use the injectivity of
L∞(0, 1) (which follows from the fact that L∞(0, 1) is a dual C(K)-space; see [F. Albiac,
N.J. Kalton, Topics in Banach Space Theory, Prop. 4.3.8]).
Remark. This was proved by Pełczyński in 1958.

PROBLEM 4.14. Let F ⊂ PN be the set algebra consisting of all those sets that are
either finite or have finite complements. Consider the measure µ : F → R given by

µ(E) =
{

|E|, if E is finite
−|N \ E|, if N \ E is finite.

Of course, µ is not σ-additive. However, show that µ naturally induces a σ-additive
measure on the algebra of all clopen subsets of the Stone space St(F ).
Remark. We used the term ‘σ-additive’ in reference to a measure defined on a set algebra,
not a σ-algebra. This means that the measure in question is supposed to satisfy the countable
additivity condition for every sequence of pairwise disjoint measurable sets, provided that their
union is still measurable. This exercise shows how to produce a σ-additive measure from a non-
σ-additive one and it also gives an example of an unbounded σ-additive measure defined on
an algebra. Recall that every σ-additive, scalar-valued measure defined on any σ-algebra must
be bounded. More generally, every strongly additive vector measure defined on any algebra must
also be bounded (see [J. Diestel, J.J. Uhl, Vector Measures, Cor. I.1.19]).

PROBLEM 4.15. Suppose X1, X2, . . . are WCG Banach spaces and 1 6 p <∞ or p = 0.
Show that (

⊕∞
n=1Xn)p is also WCG. How this can be generalised for 1 < p <∞?

PROBLEM 4.16. Let
∑∞
n=1 xn be a series in a Banach space X that is convergent

to some x ∈ X. Assume that it is also unconditionally convergent, that is,
∑∞
n=1 xπ(n)

converges in X for every permutation π of N. Prove that:

(i)
∑∞
k=1 xnk converges for every sequence {n1 < n2 < . . .} ⊂ N;

(ii)
∑∞
n=1 xπ(n) = x for every permutation π : N→ N;

(iii)
∑∞
n=1 xn is WUC (see Problem 4.8).
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PROBLEM 4.17. Prove that (
⊕∞
n=1`

n
∞)∗1 contains a complemented subspace isometri-

cally isomorphic to `1 (note that `n∞ stands for the n-dimensional Banach space equipped
with the maximum norm).
Hint. Consider the operator T : (

⊕∞
n=1`

n
∞)1 → c0 given by T ((xn)∞n=1) =

∑∞
n=1 xn; then T ∗(`1)

is isometric to `1 (why?). Observe also that T has uniformly bounded right inverses Lk on
`k∞ ⊂ c0, for each k ∈ N (i.e. TLk = I`k∞). Using a compactness argument try to define
an operator S : (

⊕∞
n=1`

n
∞)∗1 → `1 satisfying ST ∗ = I`1 with the aid of which you may define

a desired projection from (
⊕∞
n=1`

n
∞)∗1 onto T ∗(`1).

Remark. This was observed by W.B. Johnson in 1972. Note that this assertion gives two nice
counterexamples. Firstly, the space X = (

⊕∞
n=1`

n
∞)1 is weakly sequentially complete, although

X∗∗ is not, as it contains `∞. Secondly, the space X∗ is an `∞-sum of finite-dimensional spaces
`n1 (see Problem 4.12), yet it is not a Grothendieck space (which could be expected to happen,
since as we know from Grothendieck’s Theorem 6.3 the space `∞ itself is a Grothendieck space).

PROBLEM 4.18. In Problem 4.10 we defined Pełczyński’s property (V) of a given
Banach space X by requiring that the condition (∗) characterises weak compactness in
X∗. Show that this property may be equivalently defined by saying that X satisfies (V)
whenever for every Banach space Y every unconditionally summing operator T : X → Y
is weakly compact.

Note that T is called unconditionally summing (or unconditionally converging), pro-
vided that

∑∞
n=1 T (xn) is unconditionally convergent for every WUC series

∑∞
n=1 xn in

X.
Hint. Suppose the above condition holds true and fix any set K ⊂ X∗ satisfying (∗). Consider
the operator T : X → `∞(K) given by T (x)(x∗) = x∗x and show that it is unconditionally
summing.

For showing that the characterisation from Problem 4.10 implies that every unconditionally
summing operator on X is weakly compact, apply Gantmacher’s Theorem 4.2.
Remark. It may be proved that T : X → Y is unconditionally summing if and only if it does
not fix any copy of c0 which means that there is no subspace Z of X isomorphic to c0 such that
T |Z is bounded below (see [D. Przeworska-Rolewicz, S. Rolewicz, Equations in Linear Spaces,
Theorem 8.4]). This is a striking improvement of what we have said in Remark to Problem 4.8
concerning the ‘unique’ non-convergent WUC series (just consider X = Y and T = IX). The
proof of this equivalence is not very difficult but it requires some basic knowledge on Schauder
bases, in particular a ‘sliding-hump’ type selection result due to Bessaga and Pełczyński. In
view of this result, our assertion gives another translation of the fact that C(K)-spaces satisfy
(V). Namely, this is exactly what Pełczyński’ Theorem 4.5 says: every unconditionally summing
operator on a C(K)-space must be weakly compact.

PROBLEM 4.19. Prove that if a Banach space X has the property (V), then X∗ is
weakly sequentially complete. Do it twice, using both of the two equivalent definitions
of unconditionally summing operators which we have described in Problem 4.18 and the
remark following it.
Hint. For any fixed weakly Cauchy sequence (x∗n)∞n=1 ⊂ X∗ define an operator T : X → c by
T (x) = (x∗nx)∞n=1. All you need to know is that T is weakly compact (because then every subset
of {x∗n : n ∈ N} is relatively weakly compact, as x∗n = T ∗e∗n; elaborate the details). To this end,
you should show that:

4



• If ∑∞n=1 xn is a WUC series in X, then ∑∞n=1 T (xn) (unconditionally) converges, when
using the first-mentioned definition of unconditionally summing operators. In this case
you may find useful Schur’s Theorem 2.9.

• The supposition that T is bounded below on some isomorphic copy of c0 leads to a contra-
diction, when using the second-mentioned definition of unconditionally summing opera-
tors. This does not require any auxiliary combinatorial tool, like Schur’s theorem (which
is, more or less, just an incarnation of Phillips’ lemma), because it is already in there!
As we have said, to prove the equivalence between two ways of defining unconditionally
summing operators we need a ‘sliding-hump’ type argument.
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